ZWITTERIONIC COMPOUNDS OF THE 8,8'-X(C $\left.\mathbf{C}_{2} \mathbf{B}_{9} H_{10}\right)_{2}$ Co SERIES WITH MONOATOMIC O, S, Se, Te, N BRIDGES BETWEEN CARBORANE LIGANDS

J.Plešek ${ }^{a}$, S.Heřmánek ${ }^{a}$, K.Baše ${ }^{a}$, Lee J.Todd ${ }^{b}$ and W.F.Wright ${ }^{b}$
${ }^{a}$ Institute of Inorganic Chemistry, Czechoslovak Academy of Sciences, 25068 Prague - Ǩež and
${ }^{b}$ Indiana University, Bloomington, Indiana 47401, U.S.A.

The sandwich-like $\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2} \mathrm{Co}^{-}$anion reacts with RCHO in $\mathrm{H}_{2} \mathrm{SO}_{4}$ with formation of the zwitterionic $8,8^{\prime}-\mathrm{RCH}_{2} \mathrm{O}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)_{2} \mathrm{Co}$ compounds with carborane ligands bound by a $\mathrm{RCH}_{2} \mathrm{O}$ bridge. In a similar reaction with $\mathrm{SeO}_{2}, \mathrm{Te}$, or NaNO_{2}, the bridged $8,8^{\prime}-\mathrm{Se}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)_{2} \mathrm{Co}^{(-)}$, $8,8^{\prime}-\mathrm{Te}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)_{2} \mathrm{Co}{ }^{(-)}$or $8,8^{\prime}-\mathrm{H}_{2} \mathrm{~N}_{2}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)_{2} \mathrm{Co}$ compounds arise which can be methylated to the zwitterionic $8,8^{\prime}-\mathrm{X}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{16}\right) \mathrm{Co}$ compounds $\left(\mathrm{X}=\mathrm{CH}_{3} \mathrm{Se}, \mathrm{CH}_{3} \mathrm{Te},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right)$. The formation of a bridge connection has the character of a ,nucleophilic reaction under electrophilic conditions" in all cases. The structures of all compounds were established by NMR spectroscopy.

Some time ago, we reported on the preparation and constitution of $8,8^{\prime}$-methylthio-
 . $\mathrm{Co}^{\text {III }}(I)$ (ref. ${ }^{1}$). In another paper, we describe ${ }^{2}$ a reasonable synthesis of this compound together with a series of its S-alkyl analogs and we compare properties of compound I with the $8,8^{\prime}-\mathrm{CH}_{3} \mathrm{~S}_{2}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)_{2} \mathrm{Co}(\mathrm{III})$ compound where there is $-\mathrm{S}-\mathrm{S}-$ bridge.

The subject of this contribution is a description of a series of further compounds similar to compound I, in which a monoatomic bridge-connection is formed by oxygen, selenium, tellurium or nitrogen atoms, such as $8,8^{\prime}-\mathrm{RO}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right) \mathrm{Co}($ III $)($ IIa,b $)$, $8,8^{\prime}-\mathrm{CH}_{3} \mathrm{Se}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)_{2} \mathrm{Co}$ (III) (III), $8,8^{\prime}-\mathrm{CH}_{3} \mathrm{Te}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)_{2} \mathrm{Co}$ (III) (IV) and 8, 8'-$-\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)_{2} \mathrm{Co}(\mathrm{III})(V a-c)$.

The structures of compounds $I-V$ were determined by a combination of the mass spectra, ${ }^{11} \mathrm{~B}$ and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy. The schematized ${ }^{11} B \mathrm{NMR}$ of representative derivatives of this series (Fig. 1) have the main features of the parent (1,2-$\left.-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2} \mathrm{Co}^{(-)}$anion ${ }^{3}$, modified by substitution in positions $\mathrm{B}_{(8)}$ and $\mathrm{B}_{\left(8^{\prime}\right)}$. According to the molecular mass, determined by high resolution mass spectrometry (Table I), the separate compounds contain only one $\mathrm{RO}(I I), \mathrm{CH}_{3} \mathrm{Se}(I I I), \mathrm{CH}_{3} \mathrm{Te}$ (IV) or $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}(V c)$ group which must be therefore bound simultaneously to atoms

Table I
Some Properties of Compounds $I I-V$ of the Formula $8,8^{\prime}-X\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)_{2} \mathrm{Co}^{\text {III }}$

Compound X	m/ecalc. ${ }^{\text {a }}$ (found)	R_{F}	Absorption maxima ${ }^{b}$ $\lambda(c)$
IIa	$356 \cdot 2756$	$0.27{ }^{\text {c }}$	255 (21 580), 292 (10 240)
$\mathrm{CH}_{3} \mathrm{O}$	(356.2755)		408 (1380), 510 (1019)
If	370	0.26^{c}	254 (20 825), 292 (10090)
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$	(370)		408 (1320), 510 (981)
III	421.2010	$0.20^{\text {c }}$	250 (vw, sh), 296 (27 190)
$\mathrm{CH}_{3} \mathrm{Se}$	(421.2011)	$0 \cdot 68^{\text {d }}$	$\begin{aligned} & 322(\mathrm{yw}, \mathrm{sh}), 450(505), \\ & 485(515) \end{aligned}$
IV	$470 \cdot 1874$	$0.20^{\text {c }}$	249 (vw, sh), 305 (20010),
$\mathrm{CH}_{3} \mathrm{Te}$	(470.1879)	$0.68{ }^{\text {d }}$	321 (vw, sh), 473 (440)
Va	341.2759	$0.04{ }^{\text {c }}$	259 (31580), 294 (vw, sh),
$\mathrm{H}_{2} \mathrm{~N}$	(341.2756)	$0.44^{\text {d }}$	415 (1400), 498 (1020)
Vb	355	$0 \cdot 12^{\text {c }}$	
$\mathrm{CH}_{3} \mathrm{NH}$	(355)	$0.52^{\text {d }}$	
$V \mathrm{c}$	369	0.30^{c}	259 (29 380), 293 (vw, sh),
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$	(369)	$0.61{ }^{\text {d }}$	413 (1230), 498 (920)

${ }^{41} \mathrm{H},{ }^{11} \mathrm{~B},{ }^{12} \mathrm{C},{ }^{14} \mathrm{~N},{ }^{16} \mathrm{O},{ }^{32} \mathrm{~S},{ }^{59} \mathrm{Co},{ }^{82} \mathrm{Se},{ }^{130} \mathrm{Te}$ were calculated with the particular compounds; ${ }^{b}$ dichloromethane; ${ }^{c}$ TLC on Silufol foil, benzene-hexane $1: 2$ as eluent; ${ }^{d}$ TLC on Silufol foil, benzene as eluent.

Fig. 1
Correlation Diagram of ${ }^{11} \mathrm{~B}$-NMR Chemical Shifts of Particular Signals of the $8,8^{\prime}$ -$-\mathrm{X}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)_{2} \mathrm{Co}$ Compounds $I-V$ (Ordered According to the Decreasing Sanderson's Electronegativity of the Bridging Atom) in Comparison with the Parent $\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2}$. . $\mathrm{Co}^{(-)}$Anion

* Singlet, - - less probable position of the signal.
$\mathrm{B}_{(8)}$ and $\mathrm{B}_{\left(8^{\prime}\right)}$ forming thus the monoatomic bridge between them. The resultant molecule has a character of a "zwitterion" in which the bridge atom represents the positive part and the whole cage skeleton the negative part of an overall neutral molecule.

Recently, the basic structure of these compounds with the monoatomic bridge was confirmed ${ }^{4}$ by the X-ray diffraction analysis of the compound IIa. This study proved our hypothesis ${ }^{1}$ that both pentagonal planes facing to the Co atom are not parallel, but (due to the presence of a bridge with a short $B-X$ bond, $1 \cdot 50 \AA$)

$$
\begin{aligned}
& I, \mathrm{X}=\mathrm{SCH}_{3} \\
& I I a, \mathrm{X}=\mathrm{OCH}_{3} \\
& I I b, \mathrm{X}=\mathrm{OC}_{2} \mathrm{H}_{5} \\
& I I, \mathrm{X}=\mathrm{SeCH}_{3} \\
& I V, \mathrm{X}=\mathrm{TeCH}_{3} \\
& V a, \mathrm{X}=\mathrm{NH}_{2} \\
& V b, \mathrm{X}=\mathrm{NHCH}_{3} \\
& V c, \mathrm{X}=\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}
\end{aligned}
$$

they form an angle of approx. 28° with one another. This method also showed that the methyl group does not lie in the plane bisecting the atoms $\mathrm{O}, \mathrm{B}_{(8)}, \mathrm{B}_{(8)}$. Co but makes an angle of 149° with that plane.

Compounds $I I-V$ were prepared by specific reactions, the common characteristic of which is apparently a "nucleophilic substitution under electrophilic conditions" ${ }^{5}$: In the last reaction, two by-products are formed containing a two-atom $-\mathrm{O}-\mathrm{N}-$ bridge; they will be discussed in another contribution. Alkylation of compound Va in heterogeneous medium proceeds only to the stage of the N -methyl derivative $8,8^{\prime}$ $\mathrm{CH}_{3} \mathrm{NH}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)_{2} \mathrm{Co}(\mathrm{III})(\mathrm{Vb})$, in homogeneous medium the dimethyl derivative $8,8^{\prime}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)_{2} \mathrm{Co}(\mathrm{III})(\mathrm{Vc})$ is formed. Interestingly, compounds Va and Vb do not behave as typical acids. They are not soluble even in 10% aqueous KOH and they do not form an insoluble potassium salt. The almost identical positions of absorption maxima in UV spectra with compounds $V a$ and $V c$ (Table I) indicate the insignificant acidity of $\mathrm{N}-\mathrm{H}$ bonds in compounds $V a$ and $V b$.

In the preparation of compound $I I b$ it is not necessary to add acetaldehyde into the reaction mixture as it is formed in situ by reduction of a part of the acetic an-

Table II

$100 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectra of the $8,8^{\prime}-\mathrm{X}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)_{2} \mathrm{Co}$ Compounds (p.p.m. relative to tetramethylsilane, solvent: $\mathrm{C}_{6} \mathrm{D}_{6}$)

| Compound | X | $\delta \mathrm{CH}$ (rel. int.) | $\delta \mathrm{CH}_{3}$ (rel. int.) |
| :---: | :--- | :--- | :--- | :--- |
| $I I a$ | $\mathrm{CH}_{3} \mathrm{O}$ | $3.74(4)$ | $3.96(3)$ |
| $I I I$ | $\mathrm{CH}_{3} \mathrm{Se}$ | $4.18(4)$ | $2.56(3)$ |
| $I V$ | $\mathrm{CH}_{3} \mathrm{Te}$ | $4.18(4)$ | $2.92(3)$ |
| $V c$ | $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$ | $3.83(4)$ | $2.77(6)$ |

Table III
Chemical Shifts of ${ }^{11} \mathrm{~B}$-NMR Signals at 70.6 MHz of the $\left.8,8^{\prime}-\mathrm{X}_{\left(\mathrm{C}_{2}\right.} \mathrm{B}_{9} \mathrm{H}_{10}\right)_{2} \mathrm{Co}$ Compounds $I-V$ and of the Parent $\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2} \mathrm{Co}^{(-)}$Anion (p.p.m. rel. to $\mathrm{BF} \mathrm{F}_{3} \cdot \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$; solvent: $\mathrm{CD}_{3} \mathrm{COCD}_{3}$)

Compound	X	$\mathrm{B}(8)^{a}$	B(10)	$\mathrm{B}(4,7+9,12)$	B $(5,11)$	B (6)
Ha	$\mathrm{CH}_{3} \mathrm{O}$	$-18 \cdot 2^{\text {b }}$	$1 \cdot 1$	7.8; 9.0	$13 \cdot 6$	$25 \cdot 2$
Vc	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$	$-10 \cdot 3^{\text {b }}$	1.3	8.9; 9.7	$14 \cdot 8$	24.1
I	$\mathrm{CH}_{3} \mathrm{~S}$	$3 \cdot 4^{b}$	-1.5	6.0; 7.9	14.0	21.5
III	$\mathrm{CH}_{3} \mathrm{Se}$	$\begin{gathered} 8 \cdot 5^{b, c} \\ (4 \cdot 6)^{b, c} \end{gathered}$	-2.2	$\begin{aligned} & 5 \cdot 6^{c} ; 6 \cdot 9 \\ & (7 \cdot 6)^{c} \end{aligned}$	$14 \cdot 0$	$21 \cdot 1$
IV	$\mathrm{CH}_{3} \mathrm{Te}$	$20 \cdot 6^{\text {b }}$	-3.3	5.6; $6 \cdot 4$	13.9	$19 \cdot 5$
$\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2} \mathrm{Co}^{(-)}$		-6.5	-1.5	7.1; $7 \cdot 1$	16.9	$22 \cdot 3$

[^0]hydride by a transfer of the hydride ion from position $\mathrm{B}_{(8)}$ of a metallocarborane skeleton to the acetylium cation. This removal of the hydride anion from the most negative position of a heteroborane skeleton is the primary step with all "nucleophilic reductions under electrophilic conditions" ${ }^{5}$.

Compounds $I I-V$ are red, neutral, and can be easily checked by thin-layer chromatography on silica gel. Even though the R_{F} values of compounds III, IV and I (ref. ${ }^{2}$) are superposed, we can detect the presence of each compound in a mixture by comparing the character of the developing spots relative to the spots of the pure components. The substances $I I-V$ have no defined melting points and decompose above $300^{\circ} \mathrm{C}$. Some properties of compounds $I I-V$ are shown in the Table I; the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ chemical shifts are in the Table II and ${ }^{11} \mathrm{~B}$-NMR chemical shifts are gathered in the Table III. Fig. 1 documents that the ${ }^{11}$ B-NMR spectra of compounds $I-V$, ordered according to the decreasing Sanderson's electronegativity value of the substituent X , exhibit regularities in the changes of chemical shifts of the singlet ${ }^{11} \mathrm{~B}$ signals, parallel to the changes found for the $8-\mathrm{X}-1,2-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}-3-\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ series $(X=F, C l, B r, I)^{5}$.

EXPERIMENTAL

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra at 100 MHz and preliminary ${ }^{11}$ B-NMR spectra at $32 \cdot 1 \mathrm{MHz}$ were measured on a Varian XL-100 instrument. The ${ }^{11} \mathrm{~B}$-NMR spectra at 70.6 MHz were measured on an instrument consisting of a pulsed NMR apparatus (built at Indiana University, Bloomington, U.S.A.), a Varian 51.7 kG superconducting magnet, and a 20 K Nicolet 1080 series computer. UV and visible spectra were recorded on a Beckman DK 1, and IR spectra on a Beckman IR-20 A spectrometer. Mass spectra were measured on LKB 9000 and high resolution mass spectra were obtained on an AEI Model MS-902 mass spectrometer. The solvents used were of spectral grade for measurements and of chemical purity for preparative operations. Compounds $I I-V$ were purified by column chromatography on silica gel and eluted by a benzene-hexane $1: 2$ mixture or by pure benzene. The purity of single compounds was checked by thin-layer chromatography on Silufol (silica gel on aluminium foil, starch as binder, producer Kavalier, Votice, Czechoslovakia). The parent $\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2} \mathrm{Co}^{(-)} \mathrm{Cs}^{(+)}$salt was prepared according to Hawthorne and coworkers ${ }^{6}$.

Compound IIa: To the solution of $\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2} \mathrm{Co}^{(-)} \mathrm{Cs}^{(+)}(2.3 \mathrm{~g}, 0.005 \mathrm{~mol})$ and paraformaldehyde ($1.0 \mathrm{~g}, 0.033 \mathrm{~mol}$) in 10 ml of acetic anhydride, 1.5 ml of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(1.5 \mathrm{ml}$, 0.028 mol) were added and the mixture was heated to $95^{\circ} \mathrm{C}$ for 2 h under nitrogen. The mixture was decomposed with water, the reaction product extracted into benzene and isolated by the column chromatography on silica gel; yield $0.35 \mathrm{~g}(19 \cdot 7 \%)$ of $I I a$, red needles.

Compound Ilb: The same procedure used for compound IIa was employed here however no acetaldehyde was added. The acetaldehyde needed was formed in situ by the reduction of acetic anhydride. $0.1 \mathrm{~g}(5 \cdot 4 \%)$ of orange-red needles of compound $I I b$ was isolated by chromatography.

Compound III: To the suspension of $\mathrm{I} .4 \mathrm{~g} \mathrm{H}_{2} \mathrm{SeO}_{3}(0.11 \mathrm{~mol})$ in 60 ml of benzene, 8.0 g of acetic anhydride and 20 ml of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ were added. The selenous acid dissolved and the bottom-layer turned brown. After addition of $4.6 \mathrm{~g}(0.01 \mathrm{~mol})$ of $\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2} \mathrm{Co}^{(-)} \mathrm{Cs}^{(+)}$, the mixture was shaken for 1 h at $20^{\circ} \mathrm{C}$, refluxed for another 4 h and, at $10^{\circ} \mathrm{C}$, decomposed with 30 ml water. Benzene as well as the aqueous layer were separated, the sticky orange inter-layer
was dissolved in 50 ml acetone and poured into the solution of 6.0 g KOH in 60 ml methanol. After an addition of 2 ml dimethyl sulphate the reaction mixture was shaken for 10 min . The excess of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{4}$ was removed by shaking with 10 ml of 15% aqueous ammonia. Subsequently, 50 ml of benzene and 200 ml of water were added, the orange benzene layer was separated, washed with two 50 ml portions of water, filtered and concentrated to a volume of 10 ml . The resulting orange-red solution was carefully poured onto a column of 100 g of silica gel and the reaction products were eluted with benzene-hexane 1:2 mixture. The red layer of $R_{F} 0.2$ was mechanically separated, the product eluted with benzene, the solution concentrated to a volume of 10 ml and the remaining viscous liquid covered carefully with a layer of 30 ml hexane. After standing overnight, $0.35 \mathrm{~g}(8.2 \%)$ of red needles of compound $I I I$ separated.

Compound IV: To the solution of $4.6 \mathrm{~g}(0.01 \mathrm{~mol})$ of $\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2} \mathrm{Co}^{(-)} \mathrm{Cs}^{(+)}$in 20 ml of acetic anhydride, $3.4 \mathrm{~g}(0.025 \mathrm{~mol})$ of powdered tellurium and 2 ml of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ were added. The mixture was heated for 4 h to $100^{\circ} \mathrm{C}$, filtered, the main part of acetic anhydride was removed from the filtrate in vacuo of 10 Torr at a bath temperature of $80^{\circ} \mathrm{C}$, the remainder was shaken in 50 ml of water and 50 ml of benzene. The water layer was separated, benzene was evaporated in vacuo from the combined benzene layer and orange-layer. The remainder was treated in the same manner as the inter-layer in the preceding experiment; $0.15 \mathrm{~g}(3.1 \%)$ of compound $I V$ was obtained. When elementary tellurium was substituted by TeO_{2}, the yield was so low that the presence of product $I V$ was detectable only by TLC.

Compound Va: To the suspension of $\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2} \mathrm{Co}^{(-)} \mathrm{Cs}^{(+)}(4.6 \mathrm{~g}, 0.01 \mathrm{~mol})$ in 50 ml of benzene and 50 ml of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, cooled to the semi-solid slurry stage, $\mathrm{NaNO}_{2}(1.4 \mathrm{~g}$, 0.02 mol) was added in one portion. The mixture was stirred for $1 \mathrm{~h} \mathrm{at}+5^{\circ} \mathrm{C}, 3 \mathrm{~h}$ at room temperature and left to stand overnight. The red benzene layer was separated, poured onto a column of 200 ml of silica gel and eluted with benzene until the front reached the bottom of the column. The distinct layer at $R_{F} 0.4$ was removed mechanically, extracted with 200 ml of benzene, the extract concentrated to 50 ml , covered carefully with a layer of 200 ml hexane and left to stand overnight. Red needles of compound $V a(1.6 \mathrm{~g}, 47.2 \%)$ separated. Two more by-products were present in the reaction mixture that were separated on the column as orange layers at $R_{F}=0.06$ and 0.17 (benzene).

Monomethyl derivative Vb : To the solution of compound $V a(0.35 \mathrm{~g}, 0.001 \mathrm{~mol})$ in 20 ml of benzene were added 20 ml of aqueous KOH and 1.0 ml of dimethyl sulphate. After 20 min shaking, only a spot of the compound $V b$ was found by TLC in the reaction mixture. The benzene iayer was separated, shaken with 10 ml of 15% aqueous ammonia for 5 min , washed with water and concentrated to a volume of 5 ml in vacuo. The remaining solution was then cautiously covered with 15 ml of hexane and left to stand overnight. Needles of compound $V b$ separated $(0.3,88 \cdot 5 \%)$.

Dimethyl derivative Vc : A solution of compound $V a(1.7 \mathrm{~g}, 0.005 \mathrm{~mol})$ and dimethyl sulphate ($3 \mathrm{ml}, 0.032 \mathrm{~mol}$) in 50 ml of benzene was added to the solution of 6 g KOH in 60 ml of ethanol. After 10 min shaking, the mixture exhibited only the presence of a new compound as shown by TLC ($R_{F} 0 \cdot 30$, benzene-hexane $1: 2$). The mixture was decomposed with 10 ml of water and the benzene layer treated as in the preceding case. Compound $V c(1.6 \mathrm{~g}, 84.8 \%)$ was isolated in the form of red prism.

The mass spectra were measured by Dr V. Kubelka, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra at 100 MHz and B^{11} at 32.1 MHz by Dr P. Trška of the Institute of Chemical Technology, Prague. The high resolution mass spectra were measured by Dr L. Dolejš, Institute of Organic Chemistry and Biochemistry, Prague. The UV and IR spectra were recorded by Drs F. Hanousek, F. Haruda and Mrs K. Procházkotá. All these colleagues are thanked for their assistance.

REFERENCES

1. Plešek J., Heřmánek S., Janoušek Z.: Chem. Ind. London, 1974, 108.
2. Janoušek Z., Plešek J., Heřmánek S., Todd L. J., Wright W. F.: Unpublished results.
3. Siedle A. R., Bodner G. M., Todd L. J.: J. Organometal. Chem. 33, 137 (1971).
4. Šubrtová V., Petříček V., Línek A.: Personal communication.
5. Plešek J., Baše K., Heřmánek S.: II. International Meeting on Boron Chemistry, Abstract No 46, March 25-29, 1974, Leeds.
6. Hawthorne M. F., Young D. C., Andrews T. D., Howe D. V., Pilling R. L., Pitts A. D., Reintjes M., Warren L. F., Wegner P. A.: J. Amer. Chem. Soc. 90, 869 (1968).

[^0]: ${ }^{a}$ Substituted position; ${ }^{b}$ singlet; ${ }^{c}$ probable (less probable) position of signals shown by Peak Resolver in the overlapped areas.

